INFO 555 - Applied Natural Language Processing

This course can be used towards the Linguistic Dimensions major or minor requirements.

Most of web data today consists of unstructured text. This course will cover the fundamental knowledge necessary to organize such texts, search them a meaningful way, and extract relevant information from them. This course will teach natural language processing through the design and development of end-to-end natural language understanding applications, including sentiment analysis (e.g., is this review positive or negative?), information extraction (e.g., extracting named entities and their relations from text), and question answering (retrieving exact answers to natural language questions such as "What is the capital of France" from large document collections). We will use several natural language processing toolkits, such as NLTK and Stanford's CoreNLP. The main programming language used in the course will be Python, but code written in Java or Scala will be accepted as well.  Graduate-level requirements include implementing more complex, state-of-the-art algorithms for the three proposed projects. This will require additional reading of conference papers and journal articles.

May be convened with: ISTA 455

Units
4
Grade Basis
Regular (A, B, C, D, F)
Area of Specialization
Linguistic Dimensions
Usually Offered
Spring